Outfall Elimination Is it a Cost-Effective Alternative?

Managed by: Teresa Reed-Jennings, PE, City of Pasco (509)544-8080 reed-jenningst@pasco-wa.gov

Presented by: Matt Fontaine, PE, Herrera

(206)787-8270

mfontaine@herrerainc.com

Presentation Outline

Part 1: Setting

Part 2: Why Outfall Elimination?

Part 3: Opportunities and Constraints

Part 4: Methods

Part 5: Results

Part 6: Next Steps

Part 1: Setting

Welcome to Pasco

Methods

Pasco Stormwater Subbasins

5 Subbasins with Outfalls

Aging Stormwater Infrastructure

Erosion

Holes in pipes

Existing Retrofit Plans

Legend

- Manhole
- Infiltration pipe
 - Stormwater main
- S# Subbasin
- Planned
 Infiltration
 Facility

Part 2: Why Outfall Elimination?

Potential Advantages and Disadvantages of Outfall Elimination

<u>Advantages</u>

NJNJZ

- Reduced risk of surface water pollution and liability
- Improved surface water quality
- Eliminated or reduced cost of conveyance system rehabilitation
- Opportunity to address other existing problems
- Potential reduction in regulatory requirement

<u>Disadvantages</u>

- Increased risk of groundwater pollution
- Cost of new facilities
- Cost of infiltration system maintenance

Slide 10

title: potential benefits of outfall elimination Meghan Mullen, 5/4/2017 MM7

make title, matt to fill in bullets MM9

Meghan Mullen, 5/4/2017

Part 3: Opportunities and Constraints

Opportunities

Ideal conditions in Pasco:

- High infiltration rates
- Low rainfall amounts
- Only 5 outfalls
- Land area associated with outfalls is relatively small (16% of the City)
- Opportunities for retrofitting in the Right of Way

Slide 12

MM8 these make approach feasible; this is an opportunity not an objective

Meghan Mullen, 5/4/2017

MM11 ROW photo

Meghan Mullen, 5/4/2017

MM38 Matt will find a picture of the wide planter with this diagram beneath it (in the opportunity slide)

Meghan Mullen, 5/4/2017

Pasco Soils

- Hydrologic Soil Group A
- 20 to 30 inches per hour infiltration rate
- Design infiltration rate of 5 inches per hour

Constraints

- Design for the 100 year storm
- High impervious percentages
- Arid climate; < 8" / yr
- Not all ROWs are ideal
- Some ROW outside of City control

Results

Slide 14

MM12	constraints Meghan Mullen, 5/4/2017
MM13	WW - only match forest duration standard; 50 year storm only Meghan Mullen, 5/4/2017
MM14	picture of ROW and figure that illisturates the imperviousness Meghan Mullen, 5/4/2017
MM15	picture of bioretention facility full of dust and sage brush (Teresa) Meghan Mullen, 5/4/2017
MM34	potential question: what happens in the bad ROWs? Scaling up assumptions from the good sites missing something? Meghan Mullen, 5/4/2017

Other Right-of-Way Examples

Slide 15

MM2 header = figure title

Meghan Mullen, 5/4/2017

title: stormwater system rehabilitation Meghan Mullen, 5/4/2017 MM3

images of conditions in the pipe, things that need to be restored MM4

Meghan Mullen, 5/4/2017

Part 4: Methods

Process

Determine land use

Land UseDescriptionResidentialCombination of pervious and impervious areaUndevelopedMinimal impervious areaCommercialMinimal pervious area

Develop BMP templates

Native Soil Infiltration: 5 inches/hour

• BSM Infiltration: 6 inches/hour

Depth to groundwater: 21.5 feet

Hydrologic Soil Group: A

100-yr, 24 hour storm (2 inches)

Soil properties & design storm

Size and cost facilities

Mitigation Area

Results

Land Use

19

Residential Template

- Approximately 50 percent impervious
- Roof runoff partially dispersed
- Infiltration swales / Bioretention
- Size facilities to mitigate the 100-year storm event

Slide 20

MM24	take figures from CIP summary sheets Meghan Mullen, 5/4/2017
MM25	put them in as-is, may needd to tweak later Meghan Mullen, 5/4/2017
MM28	figure and basic assumptions and uncertainties (like roof area) in bullets Meghan Mullen, 5/4/2017
MM29	bullets on impervious area calculations (% roof area, how to model the roof area, % of residential areas that is impervious) Meghan Mullen, 5/4/2017

Commercial Template

- Approximately 99 percent impervious
- Subsurface infiltration pipes / chambers
- Treatment BMP
- Maintenance access
- Size facilities to mitigate the 100-year storm event

Sensitivity Analysis

Residential

- Range of facility costs per square foot
- Roof credit in hydrologic modeling

Commercial

- Percent impervious cover
- Site complexity

Roof Modeling

- 100 percent impervious
- 50 percent impervious; 50 percent landscape
- 100 percent landscape
- 100 percent infiltration

Slide 22

MM30	discuss things examined for sensitivity analysis: roof area, impervious area for commercial Meghan Mullen, 5/4/2017
MM31	figures are somewhere One in commercial retrofit summary sheet "industrial basin" for simple or complex options Meghan Mullen, $5/4/2017$
MM32	show both options Meghan Mullen, 5/4/2017
MM33	99 or 95 percent impervious for commercial Meghan Mullen, 5/4/2017

Part 5: Results

Retrofit Costs Are High

Cost per acre

- Residential: \$32,000 to \$50,000
- Commercial: \$47,000 to \$93,000

Cost per Subbasin

- Basin 1: \$20 million to \$36 million
- Basin 2: \$15 million to \$27 million

All 5 Subbasins

\$60 million to \$110 million

Next Steps

Part 6: Next Steps

Pilot Projects

- Gauge public support for retrofits
- Collect additional soils data
- Refine construction cost assumptions
- Monitor facility performance over time
- Consider lifecycle costs
- Compare with status quo or endof-pipe

Results

Questions?

